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FOREWORD

This report is part of a study whose ultimate objective is the develop-

ment of adequate procedures for estimating the backscattering from a class

of rough surfaces at oblique angles of incidence. In order to avoid a com-

plete reliance on the physical optics approximation which is inaccurate at

angles well away from specular and does not provide a reliable estimate of the

de-polarizing PuF' t of the surface, the approach that is adopted is to postulate

a simple and deterministic base surface which iS itself 'rough'. By taking

this base to be perfectly conducting, periodic and of infinite extent, the true

surface field can be determined, as can the scattering at all angles of in-

cidence. More general surface configurations such as might be appropriate

to the sea are then treated by a modification or perturbation of the field on

the periodic base.

The first step in this process is to invesdigate the scattering of a plane

wave by a two-dimensional, perfectly conducting periodic surface. This is

the only topic considered in the present report.

III
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ABSrRACT

Numerical procedures are developed for the aigital solution of the

iutegral equations for the currents induced in a perfectly conducting,

two dimensional periodic surface when a plane electromagnetic wave is

incident. Data are obtained for both the surface and far fields for a variety

of sinusoidal surfaces for plane waves of either polarization at oblique as well

as normal incidence, and the results are compared with the predictions of

physical optics.
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I

INTRODUCTION

The problem of the scattering of an electromagnetic wave by a periodic

surface is one which is easy to formulate but difficult to solve and it is only

recently, with the advent of the high speed computer, that reliable results

have bean obtained.

Prior to this time, a variety of approximate analytical treatments had

appeared in the literature, most of them being based on the approach originated

by Lord Rayleigh (1878). Assuming the surface to be infinite in extent and

making use of the periodicity in (say) the coordinate x, Rayleigh expanded the

scattered field in discrete spectrum of outgoing plane waves, which represen-

tation was assumed to hold right down to the surface. Application of the

boundary condition leads to a single equation, valid for all x, from which to

determine the complex amplitudes of the scattered waves, infinite in number.

It is at this stage that approximations must be made, and the literature is

replete with methods all of which are similar in character. Thus, for a per-

fectly conducting sinusoidal surface, Rayleigh (1878) obtained a solution by

successive approximation based on the initial neglect of all attenuated waves;

for the same surface, Tai (1948) proceeded via an orthogonal mode expansion,

followed by matrix truncation, and others have pursued essentially the same

path. An analogous treatment for a periodic interface between two homogeneous

media was developed by Rayleigh (1907), and applied to a sinusoidal profile by

Pavageau (1963) and to a triangular profile by Bousquet (1963)

At best, all such solutions are valid only for corrugations whose height

is much smaller than the free space wavelength, and In an attempt to overcome

this restriction, Meecham (1956) used a variational method to find the angular

distribution of scattered energy for a perfectly conducting grating. The scat-

tered field -vas represented as a linear combination of known solutions ot the
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wave equation whose coefficients were obtained by a least squares fit to the

boundary condition at the surface, and the procedure was then applied to a

triangular (or saw tooth) profile. A somewhat different approach was taken

by Eckart (1953) and Brekhovskikh (1952) who both used variations on tht

Kirchhoff approximation, and by Senior (1959) who employed physical optics.

In either case the determination of the scattered field is reduced to quadratures,

and S enior showed that for a plane wave at normal incidence on a sinusoidal

grating, the physical optics integral can be evaluated exactly to give the com-

plex amplitudes of the scattered waves. As indicated in Appendix A of this

Report, the same is true for both polarizations, and for oblique incidence

as well as normal. It should be emphasized, however, that the solution is

still approximate by virtue of the postulated surface field distribution, and the

failures of the physical optics estimate of the surface fields are examined in

Chapter I of this Report.

A method which is quite distinct from all of the above was developed by

Sivov (1964) who used conformal transformation and a consideration of the static

limit to analyze reflections from periodic surfaces with shallow and deep cor-

rugations. The procedure is similar to that recently employed by Mllar (1969,

1910) to investigate the inherent limitation of Rayleigh's method. As first noted

by Lippmann (1953), it is not in general valid to assume that the expansion of

the scattered field as a discrete spectrum of outgoing waves alone holds over the

entire scattering surface, and this fact was later verified by Petit and Cadlihac

(164) in the case of a sinusoidal grating. In any general treatment of the grating

problem it is therefore necessary to allow 'ingoing' waves in the immediate

vicinity of the surface.

Without exception, all of these analytical attempts to determine the fields

scattered by periodic surfaces are subject to approximation, either implicit or

2
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explicit, and it is only with the use of high speed computers that have permitted

the direct digital solution of integral equations that reliable results have been

obtained.

Most of the initial work in this area was carried out by the French inves-

tigators, such as Petit, Cadtlhac and Wirgin, and was motivated by the desire

for more efficient optical diffraction. In his early papers, Petit (see, for

example, 1963) followed Rayleigh's approach in expressing the scattered field

as a discrete spectrum of outgoing waves alone, leading to a matrix equation

for the determination of the spectral amplitudes. Since the matrix was then

truncated and inverted numerically, it will be appreciated that the method is

no more than a digitization of that originp.ted by Rayleigh. However, in later

papers (Petit, 1967), the Rayleigi" ssumption was circumvented by using an

integral equation formulation. Series expansions were adopted for the incident

and scattered fields and the integral equation converted to a matrix equation

which was solved numerically. Specific results were obtained for plane wave

incidence on gratings with triangular profiles, and the efficiencies computed.

A rather ditferent approach was taken by Pavageau (1967) who derived the in-

tegral equation directly in terms of the unknown surface current. The equation

was cast in the form of a nonhomogeneous Fredholm equation of the second kind

and solved by iteration.

Methods which are very similar to that which we shall use have been em-

ployed by Neureuther and Zaxi (1969) and by Green (1970). The former con-

sidered scattering by periodic structures, either dielectric or perfectly con-

ducting. The integral equation was obtained from Green's theorem and the

modified Green's function expressed in either of two ways depending on the

parameters of the surface. The first (space harmonic) representation is

analogous to that used by Petit; te second consists of an infinite series of
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fHankel functions, aud was computed using a Mellin transform and an asymptotic

comparison scheme. Numerical data were obtained for sinusoidal profles.

Green (1970) also used the space harmonic representation, but improved Ita

convergence by summation techniques. Data were presented for the surface

fields and diffraction efficiencies of perfectly conducting gratigs with tri-

angular profiles.

The present work also employs the numerical approach, and is concerned

with the scattering of electromagnetic waves by infinite, perfectly conducting,

two dimensional periodic surfaces of arbitrary but continuous profile. Plane

wave incidence is assumed, with either E or H polarization, and both normal

and oblique incidence are considered. A representation of the Green'% function

is employed that is similar to that used by Green (1970), and the oonvergence

improved still further by subtracting the dc terms. This has the added advantage

c making explicit the behavior of the Greents function in a neighborhood of

its singularity. Digital prngrams have been written for computing the surface

and scattered fields, and the program lstings are included In Appendix B.

Data are presented for a variety of sinusoidal profiles, and the results compared

with the physical optics predictions.

4
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FORMULATION OF THE INTEGRAL EQUATION

FOR NUMERICAL SOLUTION

We consider here an infinite, perfectly conducting periodic surface illuminated

by a plane electromagnetic wave. Since the surface is assumed two dimensional

in the sense of being independent of a Cartesian coordinate z, the entire problem

is two dimensional, and the most general solution can be deduced from the par-

ticular solutions appropriate to incident plane waves having either E or H in the

z direction, i.e. parallel to the corrugations. In either case, the problem is

essentially scalar.

2. 1 Formulation

It is convenient to develop first the integral equation in the somewhat simpler

case of a scattering surface of finite extent. Let S(see Fig. 2-) be this surface,

i and surround it by another closed surface SR . Let 0 (r) and G(rLrl) be twoRI
scalar functions which are continuous, together with their first and second

derivatives, on S and SR and throughout the volume V enclosed by them. Assume,

moreover, that k(r) satisfies the homogeneous wave equation

V 2  j(r) = 0 (2.1)

inside and on the boundaries of V, whereas

V + k2 ) G(rlr') = -6 (r-r') (2.2)

Applying Green's theorem to the volume V, we obtain

5
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IRI

FIG. 2- 1: Geometry for the application of Green'sa theorem.

6
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an ~ a

fJ G(r Irt) (V 2 4k 2 ('-i~'( 24412 )G (rIf)dV'
V

(D (2.3)

by virtue of the properties of the delta function. We now identify ' (r) with a

total field

tot iqtt(r) tohir + 0s (r)

where i(r) is an incident plane wave originated by a source at infinity (and

therefore outside V), and Os(r) is the field scattered by the surface S. Since

OB( .) must satisfy a radiation condition at infinity, its contribution to the in-

tegral over SR decreases to zero as the surface SR recedes to infinity, whereas

0'1(r) contributes itself. Equation (2.3) then becomes

tot i af a~ 5 Grf
W=r (r) f(r) 4(rrr') dS (2.4)

S

and in spite of the assumptions of an incident plane wave and a surface of finite

extent, Eq. (2.4) is also valid for an arbitrary incident field and for a surface S

extending to infinity. In the latter case, however, the proof is by no means

trivial (Jones, 1952).

The particular situation of concern to us is that in which S is doubly infinite

and divides space into two regions. It is then sufficient to integrate over only

the upper ('illuminated' ) side of the surface. We also assume that S is independent

of the coordinate z, and this allows us to distinguish two particular cases according

7
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to the polarization of the incident field. Mik units are employed and a time

factor e Y t suppressed throughout.

2. 1. 1 E or horizontal) Polarization

i iA
if E E z , the electric vector in the scattered field will also be confined

to the z direction, and we can make the identification

tot
@ Er) (r). (2.5)

tot
Since the normal derivative of E is related to the surface current density K

z z
by the equation

Etot
E (r') -jjj K z(r') (2.6)

where p is the permeability of free space, Eq. (2.4) can be written as

E tt(r) =E (r)-jwLmfj'G(rjI)K (r')+ 1 Et'r) -' G(rjf~) dS'z - z - -S (2.7)

At the perfectly conducting surface S the boundary condition is

tot
E (r) = 0 (2.8)

z-

and hence, on allowing r to approach the surface, Eq. (2.7) gives rise to the

integral equation

8
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JG(r~jf)K (r')dSI -E' (2.9)

For a two-dimensional problem the free space Grewn's function is

G(rr) H rJK (2. 10)

where H62 is the zero order Hankel function of the second kind.. The MWna

integral equation ie therefore

fK (rH 2) (k JKr I 4E (-) (2.11)

from which K has to be determined.

2.1.2 H (or vertical) Polarization

If H^ = Hf z , the total magnetic field is likewise in the z direction, and onz
making the identification

~'(~h (s).(2.12)

Eq.(2.4) b6,comes

Htot HI (1 a1 ' ~Htot to 8
HGO (-- r#)-Htz (!.) a 'G'- I

8 (2.13)

The boundary condition at the perfectly conducting surface S is
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a Htot(r)z0 (2.14)

and on allowing r to approach the surface, M'aue (1949) has shown that (2.13)

reduces to

1 Htot(r) = t(r)- tt dS' (2.15)
- - f~r -Jz ()- G(r dr'(215

S

The quantity Htot is the induced current density, and since this current flowsz
tangential to the surface in a plane perpeidicular to the z direction, we can write

.(r) = Htot(ro) t (2.16)
-- z

A
where t is a unit vector tangential to S. Inserting finally the expression (2. 10)

for the free space Green's function, we have

~~~ (2(.17
fK t(r)-- 5PH 0 (k Ir-r11 dil 4 IM z (r) - Kt~r I  (2.17)

i.e.

fs K (rH 2)(k r-r'I )cos(n ,r-rt )d1' 4 i ) -Kt(r)t .
t z

This is an integral equation from whJch to determxie Kt

2.2 Reduction of the Integral Equations foz Periodic Surfaces

We now make use of the fact that the acident field to a ptai wave and that

the surface y f(k) is periodic with period d. i.e.

10
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f(x + md) f(x), m 1, + 2, 3,... (2.19)

As before, it is convenient to consider separately the cases of E and H polari-

zation.

2.2.1 E Polarization

Let us assume that

EI  - j k (x sineycos) (2.20)

where 0 is the angle of incidence with respect to the normal to the mean surface.

The integral equation is as shown in Eq. (2. 11), but since the integration extends

from - ao to ao, this is not appropriate for a numerical solution. However, by

invoking the periodic property of the surface, the integral can be reduced to one

over a single period alone at the expense of a mere complicated form for the

kernel.

From Floquet's theorem, we have that

A-Jkmd sine _1±,+,(.1

K (r+mdx) =K (r)e 1 2 +3 ... (2.21)

Moreover,
dO' -- d(l (x' '

where f'(x) is the derivative of f with re.pect to x. This allows us to express

the integral as one along the x' axis, and since

I"- Wl -- (x-x'-md)-+ (y-y')F,

11
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we obtain

d fof 2 (k *ct-xtmd)2+fy-y t)2' Jkdinj jj1f)') *K ldx

m =-o 4 -Jk(xsinO-ycos)= -e ,(2.22)

valid for 0 < x < d with y = f(x), y' = f(x).

In arriving at (2.22) we have implicitly assumed that interchanging the order

of integration and summation is valid (a fact which is by no means obvious), but

even so Eq. (2.21) is not a very promising equation for numerical purposes

because of the extremely poor convergence of the infinite series constituting the

kernel. To rectify this situation, consider

( H2) k x-md)2+(y-yj2 " kmdainO

m=-OD

Using the Fourier integral representation of the Hankel function, the Poisson

summation formula (see, for example, Morse and Feshbach, 1953) applied to

(2.23) gives

m-J( 2 +k sinO)tK-x') -j y-yi XI d M
p 1 e , (2.24)

m m

where

k2  + k sin8)2 (2.25)
md

and the chosen branch of the square root is that for which

ImX <0

m-

12
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in order to satisfy the radiation condition.

The expression (2, 23) for Plhas been used by Yen (1962) and Green (1970), and

is equivalent to that obtained by Neureuther and Zakl (1969) using a space har-

monic expansion. The features that should be noted are that if yt y' the suc-

cessive terms decrease exponentiallywith increasing I ml for all

+ m+ sineI k

and that in addition there is an algebraic decrease (proportional to m- 1) provided

by the factor X in the denominator.
m

We can produce still a further improvement in the convergence properties

of the series by separating out the zero-frequency (k=O) terms, and this has the

added advantage of making explicit the behavior of P1 in the vicinity of the singular

point x'=x, yt'y. Putting k =-0 in (2.24), we have

-j (x-xl) 2 I
d -IM2ie e (2. 25)

kO m=-Co lld

nd since

co 21r (x-xt) 2r y-y'Id d

: log {I-
m~l

Z d liT (xx)W dI YY'I- -

(see, for example, Coll~n, 1960), provided yt y , it follows' that

13
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j (m=O term)- l og 1-8 d

2v- [" ly-Y I -j (X-x 1)
[Iye (2.27)

Hence, by subtracting the zero frequency value of each term of (2.24) and then

adding (2.27), the integral equation (2.21) takea the form

d
GI(x,y; x,y')K (x,)e dx' =.L e

O<x<d , (2.28)

where

GI~~y xY 1 -1k Iy-y' I coO8

kcosO
jd [ . 2.![jy.ys, +j _-X' }t e J .. ~. 1 xx ]jd log I1-e- d -e

+ 2m
w x' em - i Y-Y'i

,__,_ I y

Z+ Z

+ dX eJIY eM ; e .. .. + - e . _ ,,

1. X 2mM d

(2.29)

14
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with

X: k-(..... + ksin0)"

S 2m 2 (2.30)
. = j (!- -k sn0, 2

We observe that the Green's function has now been expressed as the sum

of a term involving explicitly the amplitude and the angle of incidence, a

logrt: ,, function representing the true behavior of G, in a neighborhood

of its singularity, and two series which are themeaives differences of two

convergent series.

2.2.2 H Polarization

The incident field in this case is taken to be

H (r) e snO-y cosB) (2.31)Z -

and the reduction of the integral equation (2. 17) to a form suitable for

numerical solution proceeds in much the same way as for E polarization.

Since

~W4WTIhAI) +

Eq. (2. 17) can be written as

d

Sf P2 K(x')dx': 4jH(r) - Kt(r) (3.32)

15
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where

2) - .skmdaXsdyyf

2jm

dd En

e

(2.33)

in Which sgti(T) is the signum funotion and X 18A give~n in (2 25). The zero fre-
quency (- lmtof Pi

OD 2mv 2

~2Io 2~ {~f(')j sn~-y', eI m-x) e2In
CD (xx'4 IY-Y'I}gaY-')e

2and sinceO

dj d

~ cotl

OD: Mi

16x)+ yml
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It we have

p21  zVx) f'~xf)+j sgn(y-y')} cot f (x-x')+j l y-y'I

9+if f'(xI)+isgn(Y-y')} cot {~(-X')+J fy-y'I . (2.34)

H6nce, by subtracting the zero-frequency value of each term of (2. 53) and then

adding (2.34); the integral equation (2.32) takes the form

G (~xy7', y') Kt(x'dx jdf2H() -K(x) 0 O<x<d , (2.35)
j 2 t z t

where

G 2 (x, y;x', yI):: -.j sgu4y..y')..j {ft(xi)tanO..sgn(y-.yt) e J Oxx-koa -~

-Jsnfff)d(x-) [ei

I~m I mrf
C I~I j_!~ +ksinO)4 -sg(-y' e~ d jf'(x'4Sgn(y-y')J

d d

jksnOx-l ot f. _ e x.'4

II
+j -fl~x')+j sgn(Y-Y')~ cot {x-)+ yy' . (2.36)

17
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In spite of the obvious complexity of the Green's function G2 , it3 form Is

directly analogous to G1 in consisting of certain explicit terms, a pair of cotangent

functions representing the true behavior of G2 in a ueighborhood of Its singularity,

and two aeries which are themselves differences of two convergent series. Once

again, therefore, the singularity of the Green's function has been separated out.

We further note that the integral equations (2.28) and (2.35) have been

der!ved without approximation. In consequence, the formulation so far Is exact

for any two dimensional perfectly conducting periodic surface which is smooth in

the sense of having a continuous first derivative.

2.3 Numerical Procedures

Methods for the numerical solution of integral equations have been extensively

discussed in the literature (see, for example, Harrington, 1968). The general

procedure consists of reducing the equation to a finite set of algebraic equations,

i.e. to a matrix equation, and can be illustrated by considering

dG(x,x')K(x')dx' = F(x) ,0 < x < d. (2.37)

0

We assume that the unknown function K(x') can be expanded in terms of linearly

independent base functions n(x1) such that

N

K(x') 2 an0n(x') (2.38)
n=1

where the an are the associated constants. Substitution of (2.38) into (2.37)

gives
d

N

an GC(xx')On(x')dx' F(x) (2.39)

n=1 0

18
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and the solution of the integral equation has now been reduced to the determination
of the constants, a , n=1, 2,... N.

n
There are several possible ways of finding the a , e.g. least squares fit,

n
Galerkin's method, and the collocation method, and it is the last of these that

we shall employ.

The collocation method converts (2.39) into a system of N linear equations

by forcing the two sides of (2. 39) to be equal at N sampling points in the interval

(0, d). This is simply a point matching procedure and results in the matrix

equation
d

anf G(xmox')on(')dx' = F(xm) , 0 <x <d, m=1,2, .
' N . (2.40)

n1l 0

There now remains the problem of choosing the base functions o(x) , and here

again there are several possible choices, e. g. rectangular, quadratic and

sinusoidal. By appropriate choice, we can economize in the number of sampling

points required for an 'accurate' approximation to the solution K(x), and

experience has shown that a rectangular function is not in general a good choice,

whereas sinusoidal interpolation often works rather well.

The particular form of sinusoidal interpolation that we have adopted is

predicated on the use of sampling points which are uniformly distributed in

0 <x' < d . The range of integration is therefore broken up into N Increments

of length A = dN (see Fig. 202). Furthermore, let x' be the midpoint of then

n'th cell, i.e. x' =(n- )A, and let Ax' denote the interval x'A< ,x
n n n - n

We assume that

An+Bnsin k(x'-x )+C cosk(x1-x n) If x. Ax'
K(x') n n n n n (2.41)

0 otherwis,

19
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FIG. 2-2: tlutr3Uou of the intarpolatiou prooodur.

20
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and specify the constants A n, B and C by continuing the form appropriate t:n n n

x'6OLx' out to the centers of the adjacent cells and imposing continuity. Defining
n

Kn =K(x) and K =K(Xn 1 )we have

K A+ C,
n n n

K n+ A n B n s i nkA+C n coskA 

K n A -B sinkA+C coskA,
n-i n n n

from which we obtain
-K +2Kcos kA-K

-Kn+1 + 2Kn 
n-i

A 2 (cos k A- 1)
Kn+ - Kn

B . . . n (242)
n 2sin k A

Kn+1 -2K n Kn-I
Cn 2(cos k A'- 11

Substitution of (2.41) and (2.42) into (2.40) now gives

-srk cos k A-cos k(xk-x )

S G(xpX') [K n cos kA- 1 n

nn
+Kn+1 . .2sin k A(coskA -iT. .

-sink A-(cosk A-)sink(x'-x )+slnk Acosk(x'-x ) )I
+ K n-I 2 sink A (cos k A- 1)

F(x ), (2,43)m

where x (m - )A, m 1,2... N We note in pssing that when n - i or Nm 2
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the periodicity of the k.oblem must be used to determine the constants K 1 or

KN+ 1 required in(2.,3)

The kbove procedtre is immediately applicable to the Integral equations

for E and H polarizations on inserting the appropriate values for the Graen's

function and the forcing function, but a brief comment is desirable concerning

the treatment of the sinkilar cell . The Green's functions of coixcern to us are

sirgular when x = x' , the singularity being logarithmic for E polarization, and a

first order pole for H polarization, and it is therefore necessary to modify the

numerical scheme when x x In line with the usual practice, we divide the
m n

singular cell into three portions:

(x x (X . Xn+) (x +- x+A)
n 2 n 2 n 2' n 2' n 2' C 2

with 0 < c < A. The first and third segments are handled by the standard

numerical technique, whereas the central portion is treated analytically by means

of a limiting process (Andressen, 1964).

22
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APPLICATION OF THE NUMERICAL TECHNIQUE

AND PRESENTATION OF DATA

3.1 Discussion

Although the only data that we shall present are for sinusoidally cor-

rugated surfaces, it is well to remember that the formulation given in Chapter

11 is quite general and appropriate to any perfectly conducting,two-dimensional

periodic surface. It is not even necessary that the surface have continuous first

derivative, and providing care is taken of any singularities at sharp edges, the

procedure is applicable to surfaces whose first derivative is only piecewise

ontinuous as in the case of a saw-tooth profile. The particular numerical

scheme that has been adopted is especially suitable for surfaces having

27ra/d > 1, where a is the peak deviation of the surface from its mean, and

d ia the period. In the infinite series representation of the Green's function

(see Eqs. (2.29) and (2. 36)), the first few terms (for which TXn + sin 1)

are oscillatory, but for larger m the 2rms decrease exponentially at a rate

which is ultimately determined by the quantity 21ra/d. Whereas the earlier terms

correspond to propagating modes in the scattered field, the later ones correspond

to evanescent modes, and it is only necessary to include a few of the latter in

order to achieve adequate accuracy. It is therefore apparent that for surfaces of

relatively small period (d , X) the infinite series can be approximated by the

first few terms alone.

The unknown function in the integral equation is the current induced in the

surface, and this is the quantity that is computed initially. Knowing the surface

field it is, of course, a trivial matter to determine the scattered field, and the

means of obtaining this in the form that is most convenient for our purposes is

described in Section 3. 2.
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As noted earlier, all of the numerical results given in this report are for

sinusoidal surfaces whose profile is taken to be
2 xx (3 .1)

y :acos -a-- (31

Several different combinations of d/X, a/) and incidence angle are considered,

and the distributions of surface and scattered fields computed. Comparisons

with the predictions of physical optics are also given.

3. 2 The Scattered Field

When a plane wave is incident on a periodic surface, the scattered field

can be represented as an angular spectrum of plane waves, which spectrum is

discrete by virtue of the periodic nature of the boundary condition at the sur-

face. Each of the infinity of waves making up the spectrum has associated with

it a diffraction angle which may be real or complex and is determined by the

grating law. Whereas the a.mplitude of the wave is a function of the profile size

and shape, and the directions of incidence and diffraction, the diffraction angle

depends only on the value of d/X and the direction of Incidence.

A finite number of the diffracted waves represent propagating modes and

these are the important ones far from the boundary. The remaining modes are

evanescent and though these do not serve to carry energy away from the surface,

they do play a vital role in affecting the amplitudes of the propagating modes.

The number of modes that propagate can be determined from the expressions

for X given in Eq. (2.30): if X- is real, the corresponding mode propagates

without attenuation, whereas if Xl± is pure imaginary, the mode is evanescent.

I') firXi tht (complex) amplitudes of the diffracted waves we proceed as follows.

let y f(x) be the profile of the surface and, for convenience, assume the

iticident plane wave to be E polarized. We then have
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i -Jk~x sln0i-y cos&)
E zez

(see Eq. (2.20)), and L,; invoking the periodicity of the surface, the scatter3d

field can be written as

s j (0 m In XY)

E = A e (3.2)
Mn =-o

for y >. max. f(x), where
2mwr
= 2m~ + ksin 0,

and
X = k2_ 2

m rO

The field arising from the currents induced in the surface 19 given by

d

E (x y) =  1 1+ U K(x) (3.3)

where P 1 is as shown in (2. 24). In particular, this is valid for y "m nax. f(x),

and hence, by combining (2. 22), (2. 24), 3. 2) and (3.3) we have

Aeij( X e (x K# (x')dx'
m f-Fl ( K

from which we obtain

11 d e 'W f'+j y K (x3 (3.4)
Am 2dX m f In m d

If the incident wave is H. polarized, the procedure is directly analogous.

For the incident magnetic field showm in (2. 31), we write
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O A J ei (8mx + XmY)

with
d
0eJ~mx 1+X Y t)

Am= In Xm t (x' ) K(x)dx (3.6)

Having determined the current distributions K (x') anc K (x'), it is therefore

z t
a trivial matter to compute the amplitudes of ald the diffracted modes, both

propagating and evanescent, and the amplitudes of the propagating waves for

several different values of d/)X, a/)X aid 0 are given in Tables rn-i through

i1i-4.

A widely used technique for estimating the field which is scattered by an

object is the physical optics method in which the surface field is approximated by

its geometrictl optics value. Although the estimates are deficient as regards

the polarization characteristics of the scattering, the method often provides an

adequate approximation of the scatteriag if all dimensions (including radii of

curvature) of the scattering surface are large co upared with the wavelength,

and because of its great convenience, the mewod is commonly employed in

rough surface scattering analyses even when all radii are not large. A matter

that is then ci some debate is whether shadowing should be taken into account,

and, if s,,, how. According to the physical optics method the current induced

in the surface is

K-2 nAH (3.7)

in the Okluminated region, and

K = 0 (3.8)

A
in the geometrical shadow, where n is the outward normal to the surface.
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in many instances, however, some of the failures in the resulting estimates of

the scattering can be traced to the discontinuity in the surface field created at

the shadow boundaries, and improved estimates can be hati by using (3.7) over

the entire surface, shadowed as well as lit.

Ir 'he present case of a periodic surface, the amplitudes of the diffracted

modes predicted by either version of the method -,an easily be obtained by in-

serting the postulated expressions for the current into Eqs. (3.4) and (3. 6). A

computer program has been written to carry out the calculation, and the ap-

propriate results are included in Tables IM-1 through 11-4. It will be noted

that the results produced by either version of the method show very little

agreement with the exact data. In general, the physical optics values, with

or without shadowing included, tend to be too small, and we further note that

if shadowing is excluded (or is not present), the physical opt..cs ebimates are

the same for both polarizations {see Appendix A).

It must be admitted, however, that for all of the surfaces considered,

the minimum radii of curvature are too small to provide reasonable hope for the

physical optics method to be accurate, With a sinusoidal surface, the minimum

radius of curvature, Pmin , occurs at the peaks and troughs, and the radius in-

c.L eses to become infinite where the surface crosses its mean. For the four

different surfaces embraced by Tables M.-1 through I-4, the values of kp

are as follows:

d = 0.2X, a r 0. IX, kP 0.064 ,
min

= I. 9XI, 0.25X, = 2.30,

= 0.4 , = O.2X, = 0. 127 ,

= 0.2 X, = 0.03 , = 0.212

To judge from this listing, one might expect the physical optics method to be

most successful for the second surface (Table E[-2), but in practice it works

best for the fourth surface, which lias a much smaller radius, but a small

29
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enough value of a/k to be nearly plane.

Before leaving this discussion of physical optics, we note that if shadowing

is ignored or, because of the incidence angle (0< tan- 1 ), is not present, aisa

simple ,mlytical expression for the amplitudes of the diffracted modes can be

obtained by an extension of the treatment in Senior (1959). An outline of the

procedure is given in Appendix A, and the results obtained from these formulas

are in agreement with the computed values in the last line of each of Tables

I-1 through M-4.

3.3 The Current Induced on a Sinusoidal Surface

We here examine the nature of the surface field distribution for five different

sinusoidal surfaces, considering first the results for E polarization and then those

for H polarization. In each case, t.he modulus and phase (in degrees) of a nor-

malized current are plotted as functions of x/X over a single period of the surface

running from peak to peak. The horizontal scale is therefore the horizontal dis-

tance in wavelengths and not the distance along the actual surface.

The particular current normalization chosen is such that for E polarization

the quantity plotted is K , the physical optics value of which is
k z

2 -jk(x sino-f(x) coo 0)
(cos 0 - f'(x) sinO)e ,

whereas for H polarization the quantity plotted is simply Kt whose physical optics

approximation is

2 e - j k (x sinO -f(x) cos 9)

In each of the following figures, the exact computed values are shown as circled

points, and are joined by a broken line only to guide the eye; the physical optics

approximation is shown as a solid line.

30



1363-6-T

3.3o 1 E Polarization

For a surface having d 0. 2X and a = 0. IA, the results for the three

inWCd,!ce angles 6 = 0 (normal incidence), 300 and 600 are given in Figs. 3-1

thrcuig. 3-13, respectively. We observe that for this relatively small period

moIw, of tha current is concentrated in the vicinity of the surface peaks, with the

curreut being almost zero in the troughs. There is, indeed, almost an exponen-

tial dc, rease in the current modulus away from the peaks, and the main effect of

increasing the incidence angle is to scale the curves, leaving the general shape

unchanged. The phase is somewhat more sensitive to 0, and whereas the curve

is almost flat for 6 = 0, the structure increases noticeably with 6 .

Since kp. 0.064 for this surface, it is not surprising to find that the

physical optics approximation bears no resemblance to the exact data. This is

particularly true of the modulus; the exact curve is a great deal more simple

than in the physical optics one. The physical optics phase is also poor for 6 = 0,

but agrees better for the larger e, at least in an average sense.

The effect of decreasing the amplitude of the surface while keeping the

period constant is illustrated in Figs. 3-4 and 3-5 for the case of normal in-

cidence. It is observed that as the height decreases, so does the current con-

centration near the peaks, but even for a as small as 0. 01 X (Fig. 3-5) there

is still amost a 2 : 1 variation between the peak and trough values. The phase,

on the other hand, is much more nearly constant, and is more akin to that for a

flat surface than a sinusoidal one.

Results for d = 0.4 X and a = 0.2 X with 0 = 0 and 600 are shown in Figs. 3-6

and 3-7. By comparing Fig. 3-6 with 3-1 it is seen that doubling both d and

a has little effect on the modulus of the current, but has a marked effect on the

phase. This is true also of the curves for oblique incidence (cf. Figs. 3-7 and

3..3).

31

I



1363-6-T

4I

I I

2

NX sr
0 '

-20

-40

0Li32



1363-6-T
5

, /

Ir 4'
I I

3 I I
x p

I I

0 I
201 I.

0

00

ly200

N
1A

-40'-4

33



1363-6-T

3

E IQ

Jdd

Shdo

20--

0 1

o 20

-60

34



1363-6-T

4

3

20

00

.1 .20

100

4

-5 35



2t

I t
4

'. it

.1 2

33



1363-6-T

I 1
2I

oo

0 .4o

X4.'

400

204

20-

-40-
Ok

37



K 1363-6-T

X//

40 4i

0 2
x 1) .

-400

ca

38.



1363-6-T

All of the surfaces so far considered have had rather small values of

d/X and a/X, and have not been such that one could expect physical optics to

provide a reasonable approximation. For a surface with a much larger period,

d 1. 9 X with a = 0.25 A, at normal incidence, thp appropriate curves are shown

in Fig. 3-8. Physical optics now constitutes a -,vure accurate approximation,

and though there are still noticeable discrepancies, qualitatively as well as

quantitatively, the physical optics curves do approximate the exact data in a

mean sense. The exact current modulus still has a maximum at the surface peaks,

but the minimum now occurs where the surface slope changes sign, i.e. where

the surface crosses the x axis. The phase remains fairly constant over the lower

part of the concave portion of the surface, but changes rapidly from positive to

negative and vice versa where t,,e modulus has its minimum.

Since the particular case considered in Fig. 3-8 has also been treated by

Neureuther and Zaki (1969) using their numerical program, it is appropriate to

compare the data. This is done in Fig. 3-9. The agreement is very good in

spite of the ruher different numerical procedures involved in the two methods.

3.3.2 H Polarization

For each of the situations cons;de:'ed above, we have also computed the

surface fields when the incident wave is H polarized, and we now present these

data in the -ame sequence as we did for E polarization.

The results for incidence at 0 : 0, 30o and 60o on a surface having d 0.2 X

and a - 0. 1 X are shown in Figs. 3-10 through 3-i2. Eight sampling points

were used in the coumputations. We observe that the curves for the modulus

are roughly sinusoidal in form ,and are relatively insensit!-:e to changes in 0,

with at most a slight reduction in amplitude as 0 increases. In contrait to the

behavior for E polarization. however, the iniximumn now ocer -s in the 3urface

trouLgh, with a minimum at the peak. There is agsin no agreement between the

exact data and physical optic's.
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The effect of changing the surface amplitcae while keeping the period

constant is illustrated in Figs. 3-13 and 3-14 for the case of normal incidence.

As the surface height decreases, the numerical results approach the physical

optics values, a fact which is not surprising since physical optics is most ef-

fective for a planar surface. As in the case of E polarization, the phase curve

is relatively flat even for a = 0. 03, and does not show the variation displayed

by the physical optics plane.

Figures 3-15 and 3-16 show the results for d = 0.4A and a 0 0.2X with

9 = 0 and 600, respectively. By comparing Fig. 3-15 with 3-10 it is seen that

doubling both d and a has a somewhat larger effect on the current modulus

curve than was the case for E polarizaiion. In particular, there is a notable

change of shape, with the minimum no longer occurring at the surface peak.

Similar changes occur for 9 = 600 (cf. Figs. 3-16 and 3-10). Once again, there

is no agreement between the exact data and physical optics, either in modulus

or phase.

The current distribution for a surface with larger period (d = 1. 9 X and

a = 0. 25 k) at normal incidence is presented in Fig. 3-17. The modulus has a

marked oscillation, quite distinct from that found for E polarization, with three

maxima per period. One of these is at the surface trough, and the current is

again a minimum at the surface peak. The agreement with physical optics is

poorer than for E polarization, with neither modulus nor phase being approxi-

mated to any real extent. The exact data are, however, in agreement with

those obtained by Neureuther and Zakd (1960) for this case, as evident from

Fig. 3-18.

3.4 Energy Conservation

In solving problems of electromagnetic scattering from perfectly con-

ducting surfaces, a common procedure for checking the accuracy of the solution
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is to determine the degree to which the law of conservation of energy is fulfilled.

This is essentially the check employed by Petit and Cadilbac (1964), Neureuther

and Zald 1969) and Green (1970), as well as by many others. However, as pointed

out by Amitay and Gallndo (1969), energy conservation does not provide a mea-

sure of accuracy of a solution found by the Ritz or other related methods; and

hence, in order to use energy conservation to check other than computational

round-off errors, care must be exercised in choosing the method of solving the

integral equation numerically.

The method that has been adopted in this Report is a point matching and

sinusoidal interpolaticn scheme , and since the solution does not automatically

satisfy energy conservation, we are able to use this as a check. The relation

that must be fulfilled is

S1Am 12 Re (Xm) = k cos 0 (3.9)
m=o

where N is the number of propagating modes. The extent to which this is

satisfied by the numerical results that we have obtained is shown in Table IM-5.

For comparison purposes, the percentage errors implied by the physical optics

method, with and without shadowing, are also included. Whereas all of the

exact data satisfies the energy conservation law to within (about) one percent or

better, the only case where the physical optics solutions does so is when d = 0. 2A

and a = 0.01 X. Such a surface is very close to being planar.

3.5 Convergence Check

In solving an integral equation numerically it is always desirable to carry

out a convergence test,

a) to determine the number of sampling points necessary to achieve the

required accuracy, and
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b) to test whether or not the numerical solution approaches a stable

value as the number of sampling points is increased.

Although it has not been proved mathematically that the accuracy can be improved

y increasing the number of samples, it would appear reasonable to believe so

on a physical basis.

Figures 3-19 and 3-20 show the results of a convergence test applied to

the case d-0. 2X, a--0. D and 0=0 for E and H polarizations respectively. It

can be seen that the solution does appear stable, and that surprisingly good

results are obtained even with as few as 4 sampling points.

. wo other aspects of the computer program that should be mentioned are

the computational time consumed and the number of terms included in the sum-

mation of the infinite series for the modified Green's functions. For E polarization,

a typical figure for the computational time on an IBM 360 machine using 12

sampling points is about 60 seconds. This time includes the computation of the

amplitudes of the diffracted modes, the energy conservation check and the cal-

culation of the physical optics results. A typical figure for H polarization using

8 sampling points is 28 seconds. The time increases roughly as the square of

the number of points, and most of it is eaten up in the computation of the matrix

elements.

Except for the large period surface (d-1. 9X, a-0. 25,X), where the number

of terms retained in the Green's function series was 6, only the first three terms

were required. Tests that were performed indicated that three was sufficient.
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'V

CONCLUSIONS

We have here considered the problem of a plane electromagnetic wave

incident on a perfectly conducting, two dimensional periodic surface, and have

developed numerical procedures for the direct digital solution of the integral

equations for the surface fields. By using special summation techniques fol-

lowed by the subtraction of the dc term to improve the convergence of the

series for the modified Green's function, a relatively efficient procedure has

been arrived at, and this has been programmed for a computer.

Data have been obtained for the surface fields on several different sinusoidal

surfaces when illuminated by E and H polarized plane waves at oblique as well as

normal incidence. It is found that the polarization has a marked effect on the

field. Since most of the surfaces considered had relatively small values of

d/X and a/X, there is little agreement with the physical optics estimate of the

surface field. However, this is also true for the one surface of much larger

period that was examined.

Knowing the surface field, the amplitudes of the diffracted waves in the

discrete angular spectrum representation of the scattered field can be computed,

and this has been done using the exact surface fields as well as the physical optics

estimates with shadowing eitier included or ignored. Here again the physical

optics predictions are deficient, and whereas the results derived from the

numerical program satisfy the conservation of energy law, the physical optics

values do not.

In the continuation of this study, the numerical program will be applied to

a wider variety of periodic surfaces in order to build up an understanding of the

surface field behavior, including its dependence on profile size and shape, and

the direction and polarization of the incident field. It is our hope that this will
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enable us to develop synthesis procedures for the efficient computation1 of the fields

scattered by periodic surfaces of large amplitude and period, leading ultimately

to better prediction techniques for rough surfaces in general.
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APPENDDX A: PHYSICAL OPTICS APPROXMATION

Although the main purpose ot this report is the development of a numerical

teclmique for the determination of exact values for the surface and, hence,

scattered fields, we have found it desirable to compare the results obtained

with those provided by the physical optics approximation. This approximation is

a physically-based one which postulates an explicit form for the surface field

arrived at by assuming epch element of the surface to bear that current which it

would were it part of the local tangent plane. The calculatien of the scattered

field is then reduced to quadratures.

In many instances, however, and a periodic sheet is one, an analytical

evaluation of the physical optics integral is a difficult procedure, particularly

in such cases where part of the surface is shadowed, and some of the shortcomings

of physical optics estimates in general certainly arise from sloppiness in the 4
evaluation of the integral. In still other cases, the physical optics result proves

to be more accurate if shadowing is ignored* (see, for example, Adachi, 1965)

and it is of interest to observe that for a sinusoidal sheet it is then possible to

produce an exact evaluation of the integral. Needless to say, however, the

resulting scattered field is still subject to the unknown errors inherent in the

use of the physical optics approximation, and to the neglect (if present) of all

shadowing effects.

The procedure is directly analogous to that given by Senior (1959) for the

particula, oase of an H polarized plane wave at normal incidence on a .inusoidal 4

sheet and consists of three steps:

This modified method is sometimes called 'extended physical optics' .
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() writing down the physical optics integral for the scattered field without

any shadowing included;

(ii) asymptotically evaluating this expression appropriate to an observation

point at large distances from the sheet; and

(lii) matching this expression to a discrete angular spectrum of waves to

obtain their amplitudes. Since these amplitudes are independent of the field

point, we have, in effect, produced an exact evaluation of the integral valid

certainly in the half space above the sheet.

Let us take the equntion of the perfectly conducting sheet to be

y = a cos Kz (A. 1)

where a is the amplitude of the corrugations and 27r/K = d is the period. If

the incident field is E-polarized, we write

i = A -jk (x sin 6 - y cosO) (A2)

E ze (.2

(cf. Eq. 2.20), implying

_O 6 A n lk (x sinO -y cos 0)

Hi  -Y (cosy (A.3)

where Y is the intrinsic admittance of free space

By virtue of the periodicity of the sheet and, hence, of he problem as a

whole, the scattered field can be expressed as a discrete spectrum of waves

which waves are certainly outgoing as regards y a. Thus, we have

_ O -jk( sinO+ y cos 0 4ES= A. A e  In m(.)

M=-OD

where
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kslnO =mK+ksilnO,

m
in

and that branch of the square root is chosen having imaginary part non-positive.

Application of the physical optics approximation, fullowed by steps (1) through

(iii) above now gives

= k cosmKa sin0 Jm ( ) (A.6)
inI In~

Am  'J 2_(mK4ksin&) 2  Inm

where
lim -"a (K COS 0 +k2-(mK~ksin 0)2'  (A. 7)

In particular,

A= -J (2a k cose

and as a -j- 0,

Ao --ax1, A -+0 t0,o
0 In

in agreement with the known solution for a flat sheet.

If the incident field is H-polarized, we take

i A -jk(x sinG-y cos O)
H z e , (A. 8)

implying
- - (cos + sin )e-Jk  sin 0 -y co 0)

sin Y) e(A. 9)
and expand the scattered magnetic field as

O -jk(x sin 0 + y cos )
Hs  z At e W 10)

m- m
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where 9 is as before. On evaluation of the physical optics integral, we
m

now obtain

At =A (A. 11)
m m

The equivalence of the results for the two polarizations is consistent with the

known fact that the physical optics approximation for a perfect conductor is

Inherently polarization insensitive.

Results computed from Eqs. (A. 6) and (A. 11) agree with those given

in the appropriate columns of Tables rn-i through MI-4 and obtained from a

numerical evaluation of the integrals in Eqs. (3.4) and (3.6)
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APPENDIX B: COMPUTER PROGRAMS

Two separate computer programs have been written, one for E polarization

and the other for H polarization. Each program consists of the following parts.

I. Main Program

The functions which this performs are

a) reading in the input data consisting of the amplitude and period of the surface

(measured in wavelengths), the angle of incidence, the number of sampling

points and the number of terms employed in the series summation;

b) calling the subroutine which computes the matrix coefficients, including

the analytical treatment of the singular term;

c) computing the physical optics current;

d) calling the subroutine which inverts the matrix and hence obtains the induced

surface field; and

e) printing out the appropriate numerical reaults.

1

2. Subroutines

a) Subroutine CAVE

This determines the appropriate constants in the sinusoidal interpolation

formula and calls the integration subroutine CSIMEQ to integrate the kernel

function over the sampling cell.
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b) Subroutine FUN

The constants in the sinusoidal interpolation formula are here computed.

c) Subroutine SUBC

This computes the kernel function of the integral equation.

d) Subroutine CIMPS

The numerical integration is performed using the Newton-Cotes method.

e) Subroutine CSIMEQ

This performs the matrix inversion using a Gauss reduction method.

f) Subroutine ENERGY

The amplitudes and phases of the diffracted waves are computed and the

scattered energy found.
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